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Abstract.

In sea ice models with multiple thickness categories the ice thickness

distribution evolves in time. The evolution of the thickness distribution as ice grows and
melts is analogous to one-dimensional fluid transport and can be treated by similar
numerical methods. One such method, remapping, is applied here. Thickness categories
are represented as Lagrangian grid cells whose boundaries are projected forward in time.
The thickness distribution is approximated as a linear or quadratic polynomial in each
displaced category, and ice area and volume are transferred between categories so as to
restore the original boundaries. In simple test problems and in a single-column model with
forcing typical of the central Arctic, remapping performs significantly better than methods
previously used in sea ice models. It is less diffusive than a scheme that fixes the ice
thickness in each category and behaves better numerically than a scheme that represents
the thickness distribution as a set of delta functions. Also, remapping converges faster
(i.e., with fewer thickness categories) than the alternative schemes. With five to seven
categories the errors due to finite resolution of the thickness distribution are much smaller
than the errors due to other sources. Linear remapping performs as well as the more
complex quadratic version and is recommended for climate modeling. Its computational
cost is minimal compared to other sea ice model components.

1. Introduction

Most climate models to date have assumed that sea ice has
a single uniform thickness in each grid cell. This assumption
simplifies the models but is physically unrealistic. In the central
Arctic, for example, the mean ice thickness is 2-4 m, but much
of the ocean is covered by thin first-year ice and thick pressure
ridges. The mean ice thickness, ice strength, surface energy
fluxes, and other quantities important for climate depend cru-
cially on the ice thickness distribution [e.g., Maykut, 1982;
Schramm et al., 1997; Bitz et al., 2001]. Models with a single ice
category, plus open water, can be tuned to give reasonable
thicknesses, velocities, and fluxes in the present climate but are
likely to have the wrong sensitivities to climate change.

Thorndike et al. [1975] presented a governing equation for
the thickness distribution of sea ice:
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where & is the ice thickness; v is the horizontal velocity; f =
dh/dt is the thermodynamic growth rate; i is a function de-
scribing the redistribution of ice due to convergence, diver-
gence, and shear; and g(x, 4, t) is the thickness distribution
function, with g dh defined as the fractional area covered by
ice whose thickness lies between 2 and & + dh. Note that
J59 dh = 1 by definition. Equation (1) can be solved to a
reasonable approximation by splitting it into three pieces and
solving each in turn. For example, dg/dt = —V - (vg) is solved
using a two-dimensional transport scheme, and dg/dt = s is
solved using a ridging model. This paper is primarily concerned
with the remaining equation, which describes the transport of
¢ in thickness space as ice grows and melts:
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where g depends on & and ¢ at a given location x.

Equation (2) has the same form as the one-dimensional fluid
transport or continuity equation:

dp —a
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where p is the fluid density and u is the horizontal velocity.
There are two general approaches to solving this equation.
One is to discretize it as a finite difference equation and step
the solution forward in time. The other, known as remapping
[Dukowicz and Baumgardner, 2000], relies on the fact that (3)
is mathematically equivalent to a mass conservation equation,
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where x, () and xg(¢) are the boundaries of a Lagrangian
volume. That is, x, and xj follow the fluid motion and always
enclose the same material particles. Thus, if the cell bound-
aries are projected forward in time from # to # "', the mean
densities p'! of the displaced cells are given by

PR ) = ek ). ®)

Given the new mean densities, the density field can be recon-
structed on the displaced grid and then interpolated, or
remapped, onto the original grid. The accuracy of the method
depends on the accuracy of the reconstruction. It is straight-
forward to design a one-dimensional remapping scheme that is
second-order accurate in space. The time step is not limited by
a stability criterion, as in finite difference schemes, but only by
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the requirement that fluid trajectories in neighboring grid cells
do not cross.

The similarity of (2) and (3) suggests that remapping could
be applied to the ice thickness distribution. Assume there are
N discrete thickness categories, each with fractional area c,,,
mean ice thickness %,,, left boundary H,, ,, and right bound-
ary H,,. Open water is represented by a category with area ¢,
at h = 0. The category boundaries form a one-dimensional
grid on which ¢ can be discretized. The ice area in category n
is

H,

¢, = f g dh (6)
Hp-1

and is conserved following the motion through thickness space:

dc, 0 ;
dt - 3 ( )
where
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is the material derivative and the growth rate f is the analogue
of velocity in thickness space. The ice volume is

H,
v, =c,h, = f hg dh. )
Hyp-1
The volume tendency following the motion is given by

dv,
d[ = Cnfn’

(10)

where f,,=dh,,/dt is the thermodynamic growth rate in cate-
gory n. Equations (6)—(10) form the basis for a scheme of
remapping ice area and volume.

Section 2 reviews other methods that have been used to
solve (2), each of which has certain disadvantages. Section 3
describes a more accurate method: a remapping scheme sim-
ilar to that developed by Dukowicz and Baumgardner [2000] for
spatial transport. Section 4 applies this scheme to two test
problems with exact solutions, and the results are compared to
the “fixed thickness” method of Hibler [1980] and the “delta
function” method of Bitz et al. [2001]. Section 5 tests the
remapping scheme, along with the fixed thickness and delta
function schemes, in a single-column sea ice model with forc-
ing typical of the central Arctic. Section 6 gives conclusions.

2. Other Solution Methods

Thorndike et al. [1975] were the first to solve (2) in sea ice
models. In their scheme, there are N thickness categories, each
with a prescribed mean thickness #,,. Given fractional ice areas
c, at time t, temporary thicknesses 2% at time ¢t + At are
computed with a thermodynamic ice model, holding the areas
fixed. Area is then transferred between neighboring categories
so as to restore the thickness to %, in each category while
conserving total ice area. This is done by defining a function
G (h) equal to the fractional area of ice with thickness less than
or equal to A. Since the areas are unchanged by thermody-
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namics, we have G, (t) = G%(t + At), where G, () is the
area of ice with & < h,, at time ¢ and G% (¢ + At) is the area
of ice with # = h, att + Ar. We deduce G, (¢t + At), the
areawith 7 = h,, att + At, by interpolating linearly between
adjacent values of G%(t + At). The new fractional areas
c,(t + At) are given by the differences G,(tr + At) —
G, _.(t + At). This scheme conserves ice area but not vol-
ume. The new ice volume should be equal to the sum over
categories of the products c,,(¢)h %, but in fact, it is equal to the
sum of the products ¢, (¢ + Ar)h,,. In general, these sums are
not equal.

Hibler [1980] presented a finite difference scheme that con-
serves both area and volume. He showed that volume is con-
served when transferring ice from category n to category m if
the transferred area is given by

¢, [.At
o= (n

where f,, is the growth rate in category n and h,, and h,, are
fixed mean thicknesses. When f,, is positive, m = n + 1, and
when f, is negative, m = n — 1. The thinnest and thickest
categories receive special treatment to ensure that no ice is
thinner than /4, or thicker than £ ,,. This scheme, like that of
Thorndike et al. [1975], is first-order accurate in thickness
space. It can be made second-order accurate by computing
growth rates at the category boundaries instead of the mean
thicknesses, but then volume is not conserved. Like many first-
order schemes, this scheme is highly diffusive; peaks in the
distribution quickly smear out over a broad range of thick-
nesses. Many categories are needed to converge to the solution
of (2). Flato and Hibler [1995], for example, used 28 categories
each of ridged and undeformed ice to limit diffusion and im-
prove accuracy. For this reason Hibler’s scheme may be too
expensive for climate models, in which the computational cost
of sea ice thermodynamics and horizontal transport increases
linearly with the number of categories.

A third thickness distribution scheme assigns to each cate-
gory an ice thickness that changes over time and is not con-
strained to lie between prescribed boundaries. When ice grows
in open water, a new category is added temporarily. Then the
two categories nearest in thickness or some related property
are merged to keep the number of categories constant. Bjork
[1992], Schramm et al. [1997], and Lipscomb [1998] used vari-
ations of this scheme, which is less diffusive and more accurate
than Hibler’s scheme. Model results generally converge with
5-10 categories. While this method is convenient for single-
column ice models, it is unsuitable for three-dimensional mod-
els. The ice thickness #,, in one grid cell can differ substantially
from the thickness in a neighboring cell, whereas two-
dimensional transport schemes assume that /4, is uniform
across the grid. Thus horizontal transport cannot be treated
consistently.

A fourth method, tested extensively by Bitz et al. [2001],
allows the thickness to vary in each category as ice grows and
melts, but only within prescribed limits. Each category has a
left boundary H,, _, and a right boundary H,,. Whenh,, > H,,,
all the ice in category n moves to category n + 1, and when
h, < H, ,, all the ice shifts to n — 1. During winter, ice
growing in open water is added to category 1. In summer, when
the ice is thinning, category 1 is reshaped as necessary, con-
serving volume, so that 4, is never smaller than a prescribed
minimum. H , is chosen large enough that ice never outgrows
the thickest category. This scheme is simple, inexpensive, com-

Ac,,, =
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patible with horizontal transport, and not too diffusive. Bitz et
al. found that about five categories are sufficient to represent
the main effects of the thickness distribution on heat and
freshwater fluxes. The major weakness of this solution method is
that g is represented in each category as a delta function rather
than a continuous finite distribution. Since ice is transferred be-
tween categories all at once instead of incrementally, properties
of the thickness distribution such as the ice strength can change
significantly in a single time step if ¢ is not well resolved. Cate-
gories from which ice has recently been transferred often contain
little ice, effectively reducing the resolution in thickness space.

Of these four methods, those of Hibler [1980] and Bitz et al.
[2001] are the best suited for three-dimensional modeling since
they conserve ice volume and are compatible with horizontal
transport. Henceforth we refer to these methods as the fixed
thickness and delta function schemes, respectively. The two
schemes have complementary strengths and weaknesses. The
fixed thickness scheme, while numerically smooth, is highly
diffusive, and the delta function scheme, while nondiffusive,
allows sharp numerical jumps.

The remapping scheme described below is both smooth and
nondiffusive. It is similar to the scheme of Thorndike et al.
[1975] in that the thickness distribution evolves onto a dis-
placed grid before being remapped to the original grid. How-
ever, there are two key differences. First, /,, can vary over time
in each category, although it remains between prescribed
boundaries H,,_, and H,,. Second, g can vary with 4 within
each category. (The scheme of Thorndike et al., in represent-
ing G(h) as piecewise linear, implicitly assumes that ¢ is con-
stant within each category.) The result is a more accurate
method that conserves ice volume.

3. Remapping the Thickness Distribution

We first describe the motion of category boundaries through
thickness space, then show how to approximate g in each
displaced category, and finally, show how to transfer ice area
and volume to restore the original boundaries. Assume that at
time j the ice areas ¢/, and mean thicknesses //, are known for
each of N thickness categories, with N = 2. Each category has
a prescribed right boundary H,. A thermodynamic model
computes the new mean thicknesses 2/, ! at time j + 1. The
time step must be small enough that A/,;"' < h/'' for each
pair of adjacent categories. The growth rate at /,, is given by
f, = (W,"' — hi)/At. By linear interpolation we estimate the
growth rate F,, at H,,:

_ fn+1_fn
F,=f.+ m(Hn —h,).

(12)
Ifc, orc,,, = 0, F, is set to the growth rate in the nonzero
category, and if ¢,, = ¢,,.; = 0, we set F,, = 0. The tempo-
rary displaced boundaries forn = 1 to N — 1 are given by H,
= H, + F,At. In principle, the boundaries can shift by
arbitrary distances, but the method is easier to implement if
the displaced boundaries satisfy H,,_, < H% < H,,, ;.

The ice areas in the displaced categories are ¢/, ' = ¢/, since
area is conserved following the motion, and the ice volumes are
therefore /"' = ¢/h/,""'. For simplicity we define H, =
H? _, and Hy = H? and drop the superscript j + 1. We wish
to construct a continuous function g(/4) within each category
such that (6) and (9) are satisfied. The simplest polynomial that
can satisfy both equations is a line. It is convenient to change
coordinates, writing g(n) = ¢,m + g, where n = h — H,
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Figure 1. Linear reconstruction of the thickness distribution

function g(h) for an ice category with left boundary H, = 0,
right boundary H, = 1, fractional area c¢,, = 1, and mean ice
thickness #,, = 0.2, 0.4, 0.6, and 0.8.

and the coefficients g, and g, are to be determined. Then (6)
and (9) can be written as

2
MR
915 + gomr = €,

. . (13)
MR, MR _
91 3 9o 2 = CuMn>

where n, =
the solution

Hp, — H, andn, = h,, — H,. Equation (13) has
_ 12Cn MR
91 = e M=

_ 6cn 2nR )
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(14)

Since g is linear, its maximum and minimum values lie at the
boundaries, 1 = 0 and ng:

6cn ZnR
9(0) —W<?— m) = 9o .
_ 6Cn MR ( )
g(nR) - nRZ Mn 3 .

Equation (15) implies that g(0) < 0 when n,, > 2n;/3, ie.,
when £, lies in the right third of the thickness range (H,, Hy).
Also, g(mg) < 0 when m,, < ng/3, i.e., when £, falls in the
left third of the range. Since negative values of g are unphysi-
cal, a different solution is needed whenever 4, lies outside the
central third of the thickness range. If /,, is in the left third of
the range, we define a cutoff thickness, H. = 3k, — 2H,,
and set g = 0 between H . and H ;. Equation (14) is then valid
with n, = H. — H, . Similarly, if &, is in the right third of the
range, we define H. = 3h,, — 2H and set g = 0 between H
and H.. In this case, (14) applies with n, = H; — H. and
M, = h, — Hc. If ¢ = 0 in the part of a category that is
remapped to a neighboring category, no ice is transferred.
Figure 1 illustrates the linear reconstruction of g for the
simple cases H, = 0, H; = 1,¢,, = 1, and h,, = 0.2, 0.4,
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Figure 2. Transfer of ice area from category 1 to category 2
when ice is growing in category 1. The transferred area Ac is
equal to the area under g(h) between the original and dis-
placed boundaries. The transferred volume (not shown) is
equal to the area under hg(h) between the original and dis-
placed boundaries.

0.6, and 0.8. Note that g slopes downward when /4, is less than the
midpoint thickness (H, + Hg)/2 and upward when /,, exceeds the
midpoint thickness. For /,, = 0.2 and 0.8, g = 0 over part of the
range. Zero values are aesthetically displeasing and physically
unrealistic for categories in the middle of the thickness distribu-
tion. In practice, however, /,, usually falls in the central third of
the thickness range when categories » — 1 and n + 1 contain
significant amounts of ice. Often, g = 0 in part of a category when
the adjacent category contains little or no ice. However, in these
cases, zero values improve the simulation by eliminating diffusion.

This procedure for computing ¢ is different from that of
Dukowicz and Baumgardner [2000]. In the one-dimensional
version of that scheme a continuous scalar function p(x) con-
structed from the mean values p must satisfy a single equation:

XR
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Setting p(x) = p gives a first-order accurate scheme. To
obtain second-order accuracy, we set p(x) = px + p, using
the extra degree of freedom to match the slope of p in cell n to
the slope of the line joining p,,_, and p,,, ;. When we con-
struct a thickness distribution function g(h) = g4 + g,, we
must satisfy two equations. The mean of ¢ is determined by the
area equation (6), and the slope is determined by the volume
equation (9). We cannot adjust the slope on the basis of the
mean of g in neighboring categories.

We could aim for greater accuracy by approximating g as a
quadratic polynomial g,42% + g,h + g, and imposing a curve-
fitting constraint similar to that of Dukowicz and Baumgardner
[2000]. A reasonable constraint is to minimize the least squares
difference between g and the quadratic polynomial vy passing
through the mean values of ¢ in categoriesn — 1, n, and n + 1.
That is, we minimize the quantity

HRr

A= J Lg(h) — y(W)]* dh

Hp
by computing the roots of dA/dh. This procedure is algebra-
ically complex but yields a unique best fit g. If g < 0 over part
of the range, we can find an alternative g that satisfies (6) and

(17)
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(9) and is nonnegative over the range. Since it is not obvious
that the quadratic scheme is significantly more accurate than
the linear scheme, we test both schemes in sections 4 and 5.

After constructing g in each displaced category we remap
the thickness distribution to the original boundaries by trans-
ferring area and volume among categories. We need to com-
pute the ice area Ac,, and volume Awv, between each original
boundary H,, and displaced boundary H*. If the boundary has
shifted to the right, ice moves from category n ton + 1. The
area and volume transferred are

*

Hy

Ac,,=fgdh

Hy

(18)

Hy

Av, = f hg dh.
H),

If the boundary has moved to the left, ice area and volume are
transferred from n + 1 to n using (18) with the limits of
integration reversed. It is straightforward to change coordi-
nates to m = h — H,, where H, is the left limit of the range
over which ¢ > 0. Thus we obtain the new areas c,, and
volumes v,, between the original boundaries H,,_; and H,, for
each category. The new thicknesses i,, = v,/c,, are guaran-
teed to lie between the appropriate boundaries. This proce-
dure is illustrated in Figure 2 for the simple case N = 2, with
ice growing in category 1.

Other conserved quantities are transferred in proportion to
the ice volume A v;. (Here we drop the subscript 7 and use the
subscripts i and s to distinguish between ice and snow vari-
ables.) The transferred snow volume is Av;, = v(Av;/v;),
where v, = ch,. Given the new ice area and snow volume, the
new snow thickness is 4, = wv,/c. The enthalpy ¢;, defined as
the energy needed to melt a unit volume of ice, is treated
similarly. Let v;, denote the ice volume in layer k. Defining the
ice energy in layer k as e, = vuqy, we have Ae, = e (Au/v).
From the new values of e, and v;, we compute the new
enthalpies g;, = e;;/v;,. Other state variables are treated
analogously.

The left and right boundaries of the domain require special
treatment. If ice is growing in open water at a rate F,, the left
boundary H, = 0 is shifted to the right by F At before g is
constructed in category 1, then reset to zero after the remap-
ping is complete. New ice is then added to category 1, conserv-
ing area, volume, and energy. If ice cannot grow in open water
(because the ocean is too warm or the net surface energy flux
is downward), H, is fixed at zero, and the growth rate at the
left boundary is estimated as F, = f,. The area of ice thinner
than Ah, = —F,At is added to the open water area c,,
leaving the ice and snow volume and energy unchanged. This
area is given by

ik

Ahg

Ac—fgdh.

0

(19)

The right boundary H, varies with h,. If g is linear, we set
Hy = 3hy — 2H, _,, which ensures that g(H,) = 0. For
the quadratic case we set Hy = 4h, — 3H, _,, which guar-
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antees in addition that dg/dh = 0 at H,. No ice crosses this
boundary.

4. Two Test Problems With Exact Solutions

We now apply the linear and quadratic remapping schemes,
along with the fixed thickness and delta function schemes, to
two simple test problems with exact solutions. For both prob-
lems the ice is confined to the interval (0, 1), which is divided
into N categories of equal width. The resolution is alternated
between N = 5 and N = 10. All quantities are dimensionless.

For the first problem the thickness distribution at# = 0 is a
“top hat”: g = 5 for 0 < h < 0.2, and g = 0 elsewhere. This
distribution moves to the right with uniform velocity f = 1. To
obtain numerical solutions, we initialize each category with the
same ice area and mean thickness as in the exact problem. That
is, the five-category simulations begin with ¢ = 1 and 2 = 0.1 in
category 1 and ¢ = 0 in categories 2-5. The 10-category simula-
tions start with ¢ = 0.5 and 2 = 0.5 in category 1, ¢ = 0.5
and & = 0.15 in category 2, and ¢ = 0 in categories 3—-10. The
solution is then marched forward with time step At = 1073,
(Decreasing At does not change the results significantly.) We
first compute the ice growth in each category, Ak, = fA¢, and
then transfer ice area and volume as prescribed by the scheme
being tested.

Figure 3 shows the solutions at + = 0.4, when the exact
solution is a top hat with g = 5 for 04 <h < 0.6and g = 0
elsewhere. The thickness distribution in each category is rep-
resented by a flat line segment for the fixed thickness scheme,
a sloped line segment for linear remapping, and a curved
segment for quadratic remapping. For the delta function
scheme, g is represented by a vertical line at &~ = h,,; the
height of the line is equal to the mean value of g in the
category, g = c,/(H, — H, ;). (We cannot plot g itself
because it is infinitely tall and thin.) The delta function scheme

~—— Exact solution

L | —-— Fixed thickness
== Delta function

L | — Linear remapping
——- Quadratic remapping

Ice thickness

Figure 3. Comparison of exact to numerical solutions with
initial condition g = 5 for 0 < 4 < 0.2 and g = 0 elsewhere:
(a) 5 thickness categories and (b) 10 thickness categories. The
initial top hat distribution moves uniformly to the right until
centered at 4 = 0.5.

3.0 T T /

, \ ——— = h
2.5 M \\ e t= 1 !

— t=0 /

) 02 04 06 08 1
Ice thickness
Figure 4. Exact solution to (2) at five different times given
parabolic growth rate f(h) = h — h? and initial condition
g(h,0) = 1 for 0 < h < 1. The solution is symmetric in time
about # = 0.

behaves perfectly for this problem. For N = 5 all the ice lies
in category 3, with mean thickness #; = 0.5, and for N = 10
the ice is divided equally between categories 5 and 6, with #,,
centered in each category. The remapping schemes give the
next best solutions. The thickness distribution is not perfectly
symmetric about &~ = 0.5, nor is it confined to the central
interval (0.4, 0.6), but it is still sharply peaked. With N = 5 the
linear scheme permits 32% of the ice area to drift outside the
central interval, compared to 27% for the quadratic scheme.
For N = 10 these errors fall to 15 and 11%), respectively. The
fixed thickness solutions are extremely diffuse; the area outside
the central interval is 73% for N = 5 and 63% for N = 10.

The delta function scheme is ideal for narrowly peaked dis-
tributions. Real distributions, however, are usually spread out
over a range of thicknesses. Thus we solve a second test prob-
lem in which the growth rate is f(h) = h — h?, so thatf > 0
for 0 < h < 1 and f = 0 at the boundaries. This is not a
realistic ice growth rate, but it permits an exact solution of (2).
Suppose that at + = 0 we have g(h) = 1 for0 < h < 1 and
g(h) = 0 elsewhere. Then the general solution is

et

g(h,t) = e =h) il (20)

This solution is symmetric in time about # = 0 and is shown in
Figure 4 for five values of . Ice accumulates near # = 0 as
t - — o and near & = 1 ast — . Total area is conserved.
To obtain numerical solutions, we initialize ¢,, and 4, att =
—1 by integrating (20) between category boundaries, using (6)
and (9). For the fixed thickness scheme the initial volumes
differ slightly from the exact values since the mean thicknesses
are prescribed, but the initial areas are the same. The solution
is stepped forward with At = 1073,

The resulting thickness distributions are shown in Figure 5
for t = 0 and Figure 6 for + = 1. Since linear and quadratic
remapping give nearly identical distributions, the quadratic
solutions are not shown. First, consider the solutions at t = 0.
Linear remapping gives by far the best solutions. With N = 5
(Figure 5a) the rms deviation between the computed and exact
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Figure 5. Comparison of exact to numerical solutions at

t = 0 with a parabolic growth rate: (a) 5 thickness categories
and (b) 10 thickness categories. The numerical experiments are
initialized at r = —1.

solutions is just 0.056, with a maximum deviation of 0.20 at the
left boundary. The fixed thickness scheme puts too much ice
near the boundaries and too little in the interior, resulting in an
rms deviation of 0.18. The delta function scheme has too little
ice in category 5 and no ice at all in category 1, which has
merged with category 2. With N = 10 (Figure 5b) the linear
remapping solution has improved further. The rms deviation
has fallen by a factor of 3 to 0.019, with a maximum deviation
of 0.10. The fixed thickness scheme again diffuses ice toward
the boundaries, and the rms deviation has fallen only to 0.17.
In the delta function solution, only seven categories remain,
with widely scattered values of ¢.

In Figure 6, for r = 1, linear remapping again gives the best
solutions. The rms deviations are 0.068 for N = 5 and 0.025
for N = 10. The fixed thickness scheme again puts too much
ice near the boundaries, and the rms deviation decreases only
slightly, from 0.31 to 0.30, as N increases from 5 to 10. The
delta function scheme allows more categories to disappear as
the system evolves; only 3 of the original 5 categories remain in
Figure 6a, and 5 of 10 in Figure 6b.

These results suggest that remapping is the best method for
solving (2). For sharply peaked distributions it is less accurate
than the delta function scheme but is reasonably nondiffusive,
unlike the fixed thickness scheme. For broader distributions,
remapping is much more accurate than the other schemes,
without the loss of resolution associated with category mergers
in the delta function scheme. Since linear and quadratic
remapping give similar results, the added complexity of qua-
dratic remapping seems unnecessary. Linear remapping ap-
pears to be roughly second-order accurate in thickness space,
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although it is not possible to prove this formally as with finite
difference schemes.

5. Remapping in a Single-Column Sea Ice
Model

The test problems of section 4 are very simple, with unreal-
istic ice growth functions and no thermodynamic or dynamic
feedbacks. Therefore we also test the various schemes in a
more realistic model. There is no exact solution to which
model results can be compared; the best we can do is increase
the number of thickness categories until the solution converges
and assume that the asymptotic solution is close to the “true”
solution. The excellent performance of the remapping schemes
in the two test cases provides some confidence that this as-
sumption is valid.

5.1.

The sea ice model used for these tests is a single-column
model with thermodynamics and ridging but without full-
fledged dynamics and horizontal transport. That is, the first
term on the right side of (1) is neglected, but the redistribution
function s, which ridges thin ice into thick ice, is included.
Neglecting the two horizontal dimensions considerably simpli-
fies the analysis. The model is forced with temperatures and
fluxes typical of the central Arctic, where the thickness distri-
bution is most important.

For each thickness category a thermodynamic model com-
putes growth and melting at the top and bottom surfaces along
with changes in internal ice and snow temperatures. The model
is similar to those described by Lipscomb [1998] and Bitz and
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Lipscomb [1999]. As in the model of Maykut and Untersteiner
[1971], the heat capacity of sea ice depends on temperature
and salinity and becomes large as the temperature approaches
0°C. The ice salinity profile is prescribed and increases from
0 ppt at the top surface to 3.2 ppt at the bottom. There are four
internal ice layers and a single snow layer. The top surface
temperature is found by requiring that the sum of radiative,
turbulent, and conductive fluxes is zero, unless this would yield
T,z > 0°C, in which case T, is fixed at 0°C and ice melts. Ice
can grow or melt at the bottom surface, which is fixed at the
freezing temperature of seawater, T, = —1.8°C.

The surface albedo depends on the surface type, tempera-
ture, and thickness, and thus varies among the categories. The
albedo of snow is 0.85 when 7',,. < 0°C and 0.75 when T, =
0°C. The albedo of snow-free ice of thickness #,, is given by

aip)[1 = exp( = h,/h)], (21)

which models the observed increase of ice albedo with thick-
ness. The maximum ice albedo, «,,,, = 0.60, represents an
average over pond-covered and pond-free ice. The minimum,
amin = 0.20, is a typical value for very thin ice. The e-folding
scale h, is set to 50 cm. This scale is approximate; while the
extreme values of ice albedo are reasonably well known [Per-
ovich et al., 1999], there are few measurements of the variation
of albedo with thickness.

The ice categories interact with an ocean mixed layer whose
temperature T, is updated at each time step. The mixed layer
exchanges energy with the atmosphere in areas of open water
and absorbs solar radiation that penetrates beneath the ice. If
T,, > T, the ocean transfers heat to the bottom ice surface,
following Maykut and McPhee [1995]. If T,,,, < T,, new ice
grows in open water. T, is then reset to 7, and the new ice
is added to category 1.

The ridging model is based on Thorndike et al. [1975] and
Hibler [1980]. It converts thin ice to thick ice, reducing the ice
area while conserving ice volume and energy. In order to con-
serve total area the ice area lost during ridging is replaced by
an equal area of open water. Hibler’s parameter H*, which
determines the ridge thickness, is set to 25 m instead of 100 m
to give better agreement with observed thickness distributions.

In three-dimensional models the ridging rate depends on the
rates of convergence and shear. In a column model these rates
are not computed, so we adopt the parameterization R ., =
Ryexp(—P/P,), where R, is the net rate of area loss due to
ridging of ice and closing of open water, P is the ice strength
under compression, and R, and P, are tuned to give reason-
able ridging rates. Following Rothrock [1975], P is proportional
to the change in potential energy per unit area of compressive
deformation. The values R, = 2.0 X 107> d~! and P, =
80 kN m ™! give ridging rates in reasonable agreement with
observations [Vinje et al., 1998] and models [Flato and Hibler,
1995].

Ice area is replaced by open water at a constant rate E to
simulate export through Fram Strait. E is set to 5% yr ' in
order to obtain a mean ice thickness of just under 3 m, in
agreement with observations [Bourke and Garrett, 1987; Vinje
et al., 1998]. This value is lower than the observed export rate
of about 10% yr~' [Kwok and Rothrock, 1999].

The model is forced at the top surface with climatological
values of the downward shortwave and longwave fluxes, air
temperature, relative humidity, wind speed, and snowfall rate
[Lindsay, 1998]. The climatology is based on measurements
from Soviet drifting stations on perennial Arctic ice. Instanta-
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Figure 7. Thickness category boundaries for the single-

column model as a function of the number of categories.

neous values are computed by cubic interpolation from
monthly means. The sensible and latent heat fluxes are derived
from bulk parameterizations, following Maykut [1982].

5.2. Model Results

We now evaluate the linear and quadratic remapping
schemes, the fixed thickness scheme, and the delta function
scheme using the single-column model. All experiments are
initialized on January 1 with zero ice thickness and run for 100
years (long enough to reach steady state) with a 4 hour time
step. For each scheme the number of categories N is varied
from 1 to 15. Category boundaries are given by

)

(22)

with H, = 0, ¢, = 3/N, ¢, = 15¢,, and ¢; = 3. Like the
formula used by Hibler [1980], this formula gives boundaries
that are spaced more widely as n increases. Figure 7 shows the
category boundaries for N = 1 to 15.

Figure 8 shows the annual mean ice thickness 7 in year 100
with standard forcing for each scheme. Figure 9 gives other
results for year 100: (a) the annual mean net radiative/
turbulent flux F, from the surface to the atmosphere, (b) the
annual mean heat flux F,, from the ocean to the ice, (c) the
annual thickness range, defined as the difference between the
winter maximum and summer minimum values of the average
ice thickness, and (d) the maximum ice strength. First, note the
differences between single and multiple thickness categories.
For N = 1 the four schemes are trivially equivalent, and the
mean thickness, 2.61 m, is reasonably close to the asymptotic
value of about 2.9 m. There are large errors, however, in the
fluxes and ice strength. Since there is no thin ice to melt in
summer, the ocean absorbs little sunlight, and F,, = 0.6 W m™ 2,
far below the asymptotic value of 2.9 W m ™2 Bottom melting
is minimal, and the annual thickness range is 0.59 m, much less
than the asymptotic value of 0.80 m. The maximum ice strength
for N = 1 (not shown) is 330 kN m~*, much greater than the
asymptotic value of about 90 kKN m~"'. As a result, the area of
ice ridged is just 0.03 yr !, an order of magnitude less than the

H,=H,  +c + cz{ 1+ tanh[q(
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asymptotic value of 0.34. (A parameterization tuned for single-
category models would give more reasonable values for ice
strength and ridging.) These differences illustrate the need for
multiple thickness categories.

Linear and quadratic remapping give nearly identical results.
The mean thicknesses agree to within 7 cm for all N and to
within 2 cm for N = 5. As N increases, both methods quickly
converge to a mean thickness of just over 2.9 m. The mean
thickness lies within 12 cm of the asymptotic value for N = 5
and within 6 cm of this value for N = 7. The fluxes and ice
strength also converge rapidly. As N increases from 7 to 15, F,
and F,, change by <0.05 W m ™2 The maximum ice strength
varies by <5 kN m ', the annual area ridging varies by <0.01,
and the thickness range varies by <1 cm. These results suggest
that seven categories are sufficient for climate modeling. Five
categories are adequate if we accept errors of 0.1 W m ™~ in the
surface fluxes, 10 kKN m~" in the ice strength, and 2 cm in the
thickness range.

The delta function method is slower to converge. For N = 5-8
the mean thickness is 15-30 cm too low, mainly because of
excessive summer melting. For N > 10 the surface fluxes and
thickness range are close to the values given by remapping and
do not vary much with N. The ice strength, however, is highly
variable and generally exceeds the strength given by remap-
ping.

The fixed thickness solutions differ markedly from the other
solutions and converge very slowly. The mean thickness is
3.57 m for N = 5 and does not fall below 3 m until N = 25.
This poor performance results from numerical diffusion, which
broadens the thickness distribution and causes the ice to grow
too quickly in winter and melt too quickly in summer. Since the
excess winter growth outweighs the excess summer melt, / is
too large. Winter growth is overestimated because growth rates
are inversely proportional to ice thickness. Thus a broad dis-
tribution grows faster than a sharply peaked distribution with
the same mean because fast growth to the left of the peak
outweighs slower growth to the right. Excessive summer melt
results from albedo feedback. Ice that diffuses into the thin end
of the range melts quickly in summer, exposing open water and
increasing solar absorption. The maximum open water area in
the fixed thickness scheme is 0.195 for N = 5 and 0.143 for
N = 15, compared to 0.102 and 0.096, respectively, for linear
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remapping. Thus F,, in the fixed thickness scheme is too large
by 0.6-1.2 W m~ 2, and there is too much bottom melting.
Although the ice pack is too thick on average, it contains too
much thin ice, which leads to further errors. It is weak and
ridges excessively. Also, the downward flux of sensible heat in
winter is too small, resulting in a net upward heat flux that is
too large by 0.1-0.2 W m~ 2,

Figure 10 shows several thickness distributions resulting
from the standard forcing. Figures 10a and 10b are annual
mean distributions in year 100 for N = 5 and 15, respectively,
and Figures 10c and 10d are snapshots of g at the end of
December of year 100, again for N = 5 and 15. The open
water fraction (not shown) is about 0.02 for the mean plots and
is negligible for the December plots.

Consider first the remapping schemes. The linear and qua-
dratic schemes give similar distributions in reasonable agree-
ment with observations [Vinje et al., 1998]. In each plot, g
increases from a small value at 4 = 0 to a peak near 2 m, falls
off sharply to the right of the peak, then declines more grad-
ually at larger thicknesses. The thermodynamic peaks for
N = 15 are sharper than typically observed, mainly because of
the constant year-to-year forcing and the simple ridging
scheme. For N = 5, g is set to zero in the thicker part of
category 4. For N = 15, however, the distributions are
smoother and do not go to zero. In December, 15 categories
are enough to resolve a secondary peak of first-year ice about
1 m thick.

The fixed thickness distributions are broader with lower
peaks. With N = 15, for example, the maximum values of g
are 0.29 for the annual mean and 0.39 at the end of December,
compared to 0.51 and 0.70 for linear remapping. These distri-
butions resemble observations more closely than do the
sharply peaked remapping plots. However, they are broad for
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the wrong reason: not because of realistic variability in ther-
modynamics and ridging but because of numerical diffusion.

The delta function distributions have some irregular numer-
ical properties. With N = 5, there is almost no ice in category
4 at the end of December. Figure 11a shows how the areas in
categories 1-4 vary through the year. About 40% of the area
shifts from category 3 to 4 in January, then back to category 3
in July, where it remains the rest of the year. About 35% of the
area moves from category 2 to 3 in March, back to category 2
in July, and to category 1 in August; it then merges with new
ice in September and returns to category 2 in November. At
any given time, at least one category is nearly empty. With N =
15, five categories have fractional areas <0.01 at the end of
year 100, including categories 6 and 10 in the heart of the
distribution. Three other categories have areas <0.02. By com-
parison, remapping allows the category areas to vary smoothly
in an intuitive way (Figure 11b). For N = 15 the fractional
areas exceed 0.01 in categories 3-15 and are >0.05 in catego-
ries 5-13.

The delta function method also gives rise to multiyear vari-
ability, which is undesirable in a model forced identically each
year. Figure 12a shows that for N = 5, & oscillates between
2.57 and 2.72 m over a 19 year cycle. This variability is associ-
ated with slow variations in the category areas, as illustrated in
Figure 12b. Cycles arise because ice properties such as albedo
and strength vary nonlinearly with thickness. Thus, when two
categories merge, the combined category may have properties
different from the mean properties of the two components.
Figure 13 illustrates the discontinuity in ice strength when
categories combine. In year 100 of the delta function simula-
tion the ice strength jumps sharply when categories 1 and 2
merge in January and again in early March. In year 103, there
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Figure 10. Ice thickness distributions in year 100 with stan-
dard forcing for the four schemes: (a) annual mean, N = 5;
(b) annual mean, N = 15; (c) end of December, N = 5; and
(d) end of December, N = 15. For the delta function scheme
the mean value of ¢ is plotted in each category.

13,997

0.5 T T T

04 =

0.3

=]

0.2 -

Fractional area

AWN =

U [ I [}

|
|
=1

240 300 360

Fractional area

To 60 120 18 240 300 360
Day of year

Figure 11. Variation of fractional area in categories 1, 2, 3,

and 4 for N = 5 (year 100, standard forcing): (a) delta function

scheme and (b) linear remapping.

is an additional increase when categories 2 and 3 combine in
late March. No two consecutive years are alike. Since different
values of N result in distinct cycles, properties such as the
maximum ice strength in a given year may not converge with
increasing N. For remapping, there are no such cycles; in
steady state each year is virtually identical to the one before.
The mean thickness is constant from year to year (Figure 12a),
and the ice strength and other properties vary smoothly (Fig-
ure 13).

Overall, the remapping methods outperform the other two
methods with standard forcing. The fixed thickness scheme
generates smooth thickness distributions but is less accurate
and slower to converge. The delta function scheme is not too
different from remapping for area-averaged annual mean
quantities, but it behaves less well numerically and gives less
realistic thickness distributions.

Remapping also performs well under modified forcing. Fig-
ure 14, for example, shows how the annual mean ice thickness
in year 100 varies with N in two altered climates. In the “cold”
climate the shortwave radiation is decreased by 5%, raising &
to about 3.6 m (a 24% increase over the standard case), and in
the “warm” climate the shortwave radiation is increased by
5%, lowering & to about 2.1 m (a 28% decrease). In both cases
the fixed thickness method overestimates i and converges
slowly, as with the standard forcing. Linear and quadratic
remapping converge rapidly; for both climates, & lies within 8
cm of the asymptotic value for N > 5. The delta function
method converges more slowly and generally underestimates
the ice thickness.

The warm-climate solutions merit further discussion. At the
beginning of summer the thickness distribution is sharply
peaked around 1.6 m. The peak consists of first-year ice to-
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gether with multiyear ice that nearly melted the previous sum-
mer. It is sharp because thin ice grows faster during the winter
than thick ice, so that initially broad distributions tend to
narrow. Figure 15 shows the evolution of this peak during the
summer (days 180-250) with N = 12. For the delta function
scheme (Figure 15a) more than half the ice cascades through
the five thinnest categories, occupying only one category at a
time. For the remapping scheme (Figure 15b) the peak spreads
during the summer, so that by late summer the fractional area
is 0.03 or more in each of categories 1-5. Equation (2) predicts
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Figure 13. Variation of ice strength during the year with
N = 5 and standard forcing for the delta function scheme
(years 100 and 103) and linear remapping (year 100, which is
nearly identical to all subsequent years).
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pared to standard forcing and (b) shortwave radiation in-
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that a narrow distribution should, indeed, spread during the
summer provided that its initial width is finite and that thin ice
melts faster than thicker ice (as it does). Thus the remapping
scheme gives an increasingly accurate solution to (2) as N
increases. The delta function scheme is less accurate because
the initial peak is infinitely sharp and cannot spread. This
scheme has a basic asymmetry; it can narrow a broad distribu-
tion when the velocities in thickness space are converging, but
it cannot broaden a narrow distribution when the velocities are
diverging.

Another interesting test is to set the ridging to zero. In this
case the fraction of ice thicker than thermodynamic equilib-
rium, about 3 m, is a measure of model diffusivity. Figure 16a
shows that /1 converges quickly with increasing N to about
2.8 m for the delta function and both remapping schemes. It is
surprising that ridging has such a small effect on the mean ice
thickness; the formation of thick ice is nearly balanced by the
creation of open water. (Ridging would increase the mean
thickness, however, in regions of strong net convergence.) As
before, the fixed thickness scheme overestimates /. Figure 16b
shows the mean fractional area in each category during year
100 with N = 10. In a perfect model there would be no ice
thicker than category 7, whose upper boundary is 3.78 m. The
nondiffusive delta function scheme has a mean area of 0.56 in
category 7 and zero in categories 8—10, as desired. The remap-
ping schemes are less sharply peaked in category 7 and have
small areas (0.07 and 0.06 for the linear and quadratic
schemes, respectively) of 4 m ice near the left boundary of
category 8, with no area in categories 9 and 10. Thus they are
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mildly diffusive. The fixed thickness scheme is more diffusive,
with a broad peak and a combined area of 0.29 in categories
8-10.

These simulations illustrate the main differences among the
various schemes. The results are similar when the forcing var-
ies from year to year, except that numerical variability in the
delta function scheme is then harder to distinguish from nat-
ural variability. The linear remapping scheme has been imple-
mented in the three-dimensional Los Alamos sea ice model,
CICE [Hunke and Lipscomb, 1999], where it gives thickness
distributions similar to those found in the column model.

6. Conclusions

The ice thickness distribution schemes tested to date in
large-scale models have at least one of two major weaknesses.
The fixed thickness scheme of Hibler [1980] is very diffusive; it
requires 20-30 categories to converge accurately to the solu-
tion to (2). The delta function scheme of Bitz et al. [2001] is
poorly behaved numerically; it allows discontinuous changes in
ice properties that lead to spurious multiyear variability, and it
leaves a substantial fraction of categories nearly empty at any
given time. Remapping solves both problems. Since ¢ is ap-
proximated in each thickness category as a linear or quadratic
polynomial instead of a constant, remapping is more accurate
and less diffusive than the fixed thickness scheme. Since ice
moves between categories in small increments, remapping is
smoother than the delta function scheme.

For these reasons, remapping significantly outperforms the
alternative schemes. When applied to two complementary test
problems, remapping gives excellent solutions that converge
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rapidly as the number of categories increases. The fixed thick-
ness scheme is less accurate and slow to converge. The delta
function scheme, while well suited for narrow distributions,
gives poor results for broad distributions. In a more realistic
single-column sea ice model the two remapping schemes again
are more accurate and converge faster with increasing resolu-
tion than the other methods. The delta function method also
converges fairly quickly in most cases, but its irregular numer-
ical behavior limits its accuracy.

All these schemes are relatively inexpensive. The delta func-
tion scheme is the cheapest, followed by the fixed thickness
scheme, linear remapping, and quadratic remapping. Linear
remapping costs about 15% as much per category as the ther-
modynamic model used here, compared to 20% for quadratic
remapping. With 10 or fewer categories the thermodynamic
model is much cheaper than viscous plastic dynamics or sec-
ond-order horizontal transport. Thus the cost of either remap-
ping scheme in the context of a large-scale model is minimal.

Although quadratic remapping satisfies a curve-fitting con-
straint intended to increase its accuracy, it gives nearly the
same results as linear remapping in all the cases studied. The
area and volume equations, (6) and (9), constrain ¢ enough
that the additional constraint appears unnecessary. Since lin-
ear remapping is faster than quadratic remapping and simpler
to implement, it is probably the better scheme for most appli-
cations, including climate modeling.

Several authors have tried to determine the minimum num-
ber of thickness categories needed to resolve the area-
averaged annual cycles of ice thickness, ice strength, and sur-
face fluxes. This study suggests that five to seven categories,
with higher resolution for thinner ice, are sufficient. In column
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model simulations with five categories, remapping gives a
mean ice thickness within about 10 cm of the asymptotic value.
The errors in the mean surface fluxes are <0.1 W m ™2, and the
ice strength is accurate to within 10%. Increasing N from 5 to
7 can reduce these errors by a factor of 2, but further increases
in N make little difference.

These errors are small compared to other model uncertain-
ties. For example, lowering the maximum ice albedo from 0.60
to 0.57 with N = 15 and standard forcing reduces the mean
ice thickness by 50 cm and raises the shortwave absorption by
1 W m ™ 2. Changing the ridging parameter H* from 25 to 50 m
increases the mean ice strength by more than 50%. Both these
modified parameter values are within the range used by cur-
rent ice models.

Bitz et al. [2001], who used the delta function method, also
argued that about five thickness categories are sufficient for
climate modeling. With five categories and standard forcing
the delta function scheme underestimates the mean ice thick-
ness by about 30 cm and introduces multiyear thickness oscil-
lations of about 15 cm. Although these errors may be tolerable
given other model uncertainties, remapping clearly is more
accurate.

More categories would be needed in a model that distin-
guishes among ice types: for example, first-year versus multi-
year ice or level versus ridged ice. Then each ice type would
have its own thickness distribution, and each distribution
would be remapped independently. Since differences between
ice types can usually be parameterized in terms of ice thick-
ness, additional thickness distributions would not necessarily
improve the results.
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